If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(w^2+w-20)=0
We get rid of parentheses
w^2+w-20=0
a = 1; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·1·(-20)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-9}{2*1}=\frac{-10}{2} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+9}{2*1}=\frac{8}{2} =4 $
| 4=7x-8-3x | | (2w+12)=0 | | -5x-2=16 | | 99-99-99x=99 | | 36=20=8z | | 1=m-4/9 | | (2w+12)(w^2+w-20)=0 | | x+x-x=100 | | 2x11=-23 | | 11=-3+7m | | 2x-2x+10=0 | | -4029=-79n | | 5x+0.2=1.8 | | x-3=15-5 | | E/t*t=E | | 5^(2x)=15,625 | | 3x+1=86 | | 6–x=-14–3x | | x/12=72/108 | | 9+9=12+x | | -5616=78x | | -5y+8=-2(y-1) | | 9=99-x+x | | n/44=28 | | -12x+19=-9 | | -9(u-8)=3u+36 | | 96+n=18 | | 885=5(x+16) | | v-78=2 | | x/5=75/25 | | x/(-4)=(-12) | | 8t+2=t |